How Lead Acid Batteries Get Wrecked and What To Do About It

iStock_000013983002Small

So far in this Online Book we have covered the basic theory. Now let's look at, and quantify, what will happen if we just stick with the electrical system installed on most boats. After all, if we are going to improve things, it's as well to know what the payoff will be.

About eight years ago, we switched to Absorbed Glass Mat (AGM) batteries on Morgan’s Cloud, to get the following benefits over liquid filled lead-acid batteries:

  • Shorter recharge times since AGM batteries accept a faster charge rate.
  • About 10% more capacity in the same size battery.

However, our experience was not good: We went through four sets of house batteries from two different manufacturers.

In the process of solving that problem, we learnt a huge amount that can be applied to the care of any lead acid battery. Read on:

  1. One Simple Law That Makes Electrical Systems Easy to Understand
  2. How Batteries Charge (Multiple Charging Sources Too)
  3. How Hard Can We Charge Our Lead Acid Batteries?
  4. Cruising Boat Electrical System Design, Part 1—Loads and Conservation
  5. Cruising Boat Electrical System Design, Part 2—Thinking About Systems
  6. Cruising Boat Electrical System Design, Part 3—Specifying Optimal Battery Bank Size
  7. The Danger of Voltage Drops From High Current (Amp) Loads
  8. How Lead Acid Batteries Get Wrecked and What To Do About It
  9. 11 Steps To Better Lead Acid Battery Life
  10. 10 Tips To Install An Alternator
  11. Stupid Alternator Regulators Get Smarter…Finally
  12. WakeSpeed WS500—Best Alternator Regulator for Lead Acid¹ and Lithium Batteries
  13. Smart Chargers Are Not That Smart
  14. Equalizing Batteries, The Reality
  15. Battery Monitors, Part 1—Which Type Is Right For You?
  16. Battery Monitors, Part 2—Recommended Unit
  17. Battery Monitors, Part 3—Calibration and Use
  18. Do You Need A Generator?
  19. Efficient Generator-Based Electrical Systems For Yachts
  20. Battery Bank Size and Generator Run Time, A Case Study
  21. Battery Options, Part 1—Lithium
  22. Battery Options, Part 2—Lead Acid
  23. Why Lithium Battery Load Dumps Matter
  24. 8 Tips To Prevent Lithium Battery Load Dumps
  25. Building a Seamanlike Lithium Battery System
  26. Lithium Ion Batteries Explained
  27. Should Your Boat’s DC Electrical System Be 12 or 24 Volt?—Part 1
  28. Should Your Boat’s DC Electrical System Be 12 or 24 Volt?—Part 2
  29. Q&A—Are Battery Desulphators a Good Idea?
  30. Renewable Power
  31. Wind Generators
  32. Solar Power
  33. Hydro Power
  34. Watt & Sea Hydro Generator Review
  35. A Simple, Efficient and Inexpensive¹ 12 or 24 Volt DC Electrical System
  36. 8 Checks To Stop Our DC Electrical System From Burning Our Boat
Subscribe
Notify of
76 Comments
Oldest
Newest
Inline Feedbacks
View all comments