Lithium Ion Batteries Explained

The lithium polymer battery pack of an ISF 5000 solar car I worked on in undergrad. This suitcase-sized 35 kilogram pack, with a usable capacity of 5 kWh, is equal to four 8D lead-acids weighing nearly 300 kg.
The lithium polymer battery pack of an ISF 5000 class solar car I worked on in undergrad. This suitcase-sized 35 kilogram pack, with a usable capacity of 5 kWh, is equal to four 8D lead-acids weighing nearly 300 kg.

There's a good chance that you are currently sharing the room with a half-dozen or more lithium ion batteries. The computer in front of you has one, your camera has one, your phone has one, the R/C car your kid is racing around your ankles has one. Lithium battery technology is almost everywhere. And, soon, it'll be coming to a boat near you.

Before we start, let's (temporarily) forget everything we know from the lead-acid world: charge profiles, cycle life, equalization, voltage setpoints, monitoring, and so on. Lithium is a completely different animal.

  1. Why Most New-To-Us Boat Electrical Systems Must Be Rebuilt
  2. One Simple Law That Makes Electrical Systems Easy to Understand
  3. How Batteries Charge (Multiple Charging Sources Too)
  4. 5 Safety Tips For Working on Boat DC Electrical Systems
  5. 7 Checks To Stop Our DC Electrical System From Burning Our Boat
  6. Cruising Boat Electrical System Design, Part 1—Loads and Conservation
  7. Cruising Boat Electrical System Design, Part 2—Thinking About Systems
  8. Cruising Boat Electrical System Design, Part 3—Specifying Optimal Battery Bank Size
  9. The Danger of Voltage Drops From High Current (Amp) Loads
  10. Should Your Boat’s DC Electrical System Be 12 or 24 Volt?—Part 1
  11. Should Your Boat’s DC Electrical System Be 12 or 24 Volt?—Part 2
  12. Battery Bank Separation and Cross-Charging Best Practices
  13. Choosing & Installing Battery Switches
  14. Cross-Bank Battery Charging—Splitters and Relays
  15. Cross-Bank Battery Charging—DC/DC Chargers
  16. 10 Tips To Install An Alternator
  17. Stupid Alternator Regulators Get Smarter…Finally
  18. WakeSpeed WS500—Best Alternator Regulator for Lead Acid¹ and Lithium Batteries
  19. Smart Chargers Are Not That Smart
  20. Do You Need A Generator?
  21. Efficient Generator-Based Electrical Systems For Yachts
  22. Battery Bank Size and Generator Run Time, A Case Study
  23. Battery Options, Part 1—Lithium
  24. Battery Options, Part 2—Lead Acid
  25. Why Lithium Battery Load Dumps Matter
  26. 8 Tips To Prevent Lithium Battery Load Dumps
  27. Building a Seamanlike Lithium Battery System
  28. Lithium Ion Batteries Explained
  29. 11 Steps To Better Lead Acid Battery Life
  30. How Hard Can We Charge Our Lead-Acid Batteries?
  31. How Lead Acid Batteries Get Wrecked and What To Do About It
  32. Equalizing Batteries, The Reality
  33. Renewable Power
  34. Wind Generators
  35. Solar Power
  36. Hydro Power
  37. Watt & Sea Hydro Generator Review
  38. Battery Monitors, Part 1—Which Type Is Right For You?
  39. Battery Monitors, Part 2—Recommended Unit
  40. Battery Monitors, Part 3—Calibration and Use
  41. Battery Containment—Part 1
  42. Q&A—Are Battery Desulphators a Good Idea?

Matt, Engineering Correspondent, is a Professional Engineer and true renaissance man, with a wide range of expertise including photography and all things boat design. He has a unique ability to make complex subjects easy to understand and he keeps an eye on the rest of us to make sure that we don’t make any technical mistakes. Working as M. B. Marsh Marine Design, Matt designs innovative powerboats of all shapes and sizes.

Subscribe
Notify of
58 Comments
Oldest
Newest
Inline Feedbacks
View all comments